Paternal expression of WT1 in human fibroblasts and lymphocytes.

نویسندگان

  • K Mitsuya
  • H Sui
  • M Meguro
  • H Kugoh
  • Y Jinno
  • N Niikawa
  • M Oshimura
چکیده

The Wilms' tumor suppressor gene ( WT1 ) was previously identified as being imprinted, with frequent maternal expression in human placentae and fetal brains. We examined the allele-specific expression of WT1 in cultured human fibroblasts from 15 individuals. Seven of 15 fibroblast lines were heterozygous for polymorphic alleles, and the expression patterns were variable, i.e., equal, unequal or monoallelic paternal expression in three, two and two cases, respectively. Exclusive paternal expression of WT1 was also shown in non-cultured peripheral lymphocytes from the latter two individuals. The allele-specific expression profiles of other imprinted genes, IGF2 and H19, on human chromosome 11 were constant and consistent with those in other tissues. Our unexpected observations of paternal or biallelic expression of WT1 in fibroblasts and lymphocytes, together with the previous findings of maternal or biallelic expression in placentae and brains, suggest that the allele-specific regulatory system of WT1 is unique and may be controlled by a putative tissue- and individual-specific modifier.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Altered Th17/Treg Ratio in Recurrent Miscarriage after Treatment with Paternal Lymphocytes and Vitamin D3: a Double- Blind Placebo-Controlled Study

Background: Recurrent miscarriage (RM) affects 2-5% of pregnant women. Paternal lymphocyte immunotherapy is a common treatment for RM patients but the outcome has not been consistent. Therefore, combined therapy with other immunosuppressive drugs such as 1 a, 25-dihydroxy-vitamin-D3 (vitamin D3) may improve the outcome. Objectives: To investigate the effect of vitamin D3 on the balance of two...

متن کامل

P-130: Piwil2 Reprograms Human Fibroblasts to Germ Cell Lineage

Background The piwi family genes are highly conserved during evolution and play a crucial role in stem cell self-renewal, gametogenesis, and RNA interference in diverse organisms ranging from Arabidopsis to humans. Piwil2, also known as Hili, is one of the four human homologues of piwi. Piwil2 was found in germ cells of adult testis, suggesting that this gene functions in spermatogonial stem ce...

متن کامل

The Prognostic Impact of WT1 Expression Levels, Mutations, and SNP rs16754 in AML Patients: A Retrospective Cohort Study

Background and Objective: The clinical outcomes and treatment options for acute myeloid leukemia (AML) patients are highly dependent upon molecular markers. In this study, Wilms tumor (WT1) (exons 7 and 9) mutations, SNP rs16754, and WT1 expression levels in 130 random AML patients were screened; FMs-like tyrosine kinase-3 internal tandem duplication (FLT3-ITD), nucleophosmin (NPM1), and CCAAT/...

متن کامل

The Effects of Low Level Laser Therapy on the Expression of Collagen Type I Gene and Proliferation of Human Gingival Fibroblasts (Hgf3-Pi 53): in vitro Study

Background  Recent investigations show that both proliferation and secretion of macromolecules by cells can be regulated by low level laser therapy (LLLT). The aim of this study was to determine whether LLLT could induce a bio-stimulatory effects on human gingival fibroblasts (HGF3-PI 53). Therefore, the effect of laser irradiation on human gingival cell proliferation and collagen type I gene ...

متن کامل

Genomic imprinting at the WT1 gene involves a novel coding transcript (AWT1) that shows deregulation in Wilms' tumours.

The Wilms' tumour suppressor gene, WT1, is mutated in 10-15% of Wilms' tumours and encodes zinc-finger proteins with diverse cellular functions critical for nephrogenesis, genitourinary development, haematopoiesis and sex determination. Here we report that a novel alternative WT1 transcript, AWT1, is co-expressed with WT1 in renal and haematopoietic cells. AWT1 maintains WT1 exonic structure be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Human molecular genetics

دوره 6 13  شماره 

صفحات  -

تاریخ انتشار 1997